
BETWEEN CIRCUITS AND CHOMSKY:
PRE-PRETRAINING ON FORMAL LANGUAGES

IMPARTS LINGUISTIC BIASES

 Michael Y. Hu et al., 2025 (New York University)

InCLoW Reading Group Francesca Padovani

13/03/2025

UNIVERSITY OF GRONINGEN PRESENTED BY

DATE

TRANSFORMERS’ DATA HUNGRYNESS

PRE-PRETRAINING ON FORMAL LANGUAGE (before training on natural language)

How positive transfer occurs, if a generalizing solution cannot always be learned?

Which characteristics of formal languages make them effective for pre-pretraining?

01 INTRODUCTORY CONTEXT

CONTEXT SENSITIVE LANGUAGES transfer best to natural language learning, but Transformers struggle with some
context-sensitive languages (they can’t always learn next-token prediction for them)

Optimal transfer from formal to natural language occurs at the intersection of two theoretical hierarchies

Specifically they hypothesize that effective pre-pretraining languages should be:

expressive enough to capture hierarchical natural language dependencies (focus on the LANGUAGE)1.
learnable by transformers in a length-generalizing way (focus on the MODEL)2.

01 MAIN HYPOTESIS

Chomsky
hierarchy of

formal languages

Circuit
complexity
hierarchy

02 THE CHOMSKY HIERARCHY

Only a select few phenomena in natural language require context sensitivity:
cross-serial dependencies in Swiss German or anaphora

The rest can be modeled using context-free grammars

A classic context-free language is 𝑘-Dyck - the language of well-balanced parentheses with 𝑘 bracket types ex. ([])[]

Removing the constraint that Dyck braces must be well-nested (but enforcing that every opening brace must be closed and vice
versa) yields 𝑘-Shuffle Dyck (strictly context-sensitive rather than context-free)

FO(M)Every
transformer

TransformersAny FO(M)

02 THE CIRCUIT COMPLEXITY HIERARCHY

FOCUS OF THIS WORK: TRANSFORMERS

WHICH IS THE EXPRESSIVE POWER OF TRANSFORMERS?

 TWO LOGICS THAT EMERGE FROM THIS CIRCUIT COMPLEXITY VIEWPOINT: FO(M), C-RASP

FO(M) = any language that a transformer can learn can also be described using a FO(M) program

C-RASP = is a restriction of FO(M) designed to be a lower bound on what transformers can express

First-order
logic with
majority

well-defined variant of
Restricted Access Sequence

Processing programming
lang

C-RASP similar to FO(M), but with some restrictions = crucially in C-RASP each predicate can only refer to one index
variable 𝑖, whereas in FO(M), predicates can refer to two (or more) indices 𝑖, 𝑗 introduced by different quantifiers.

Recent works (Zhou et al., 2024; Huang et al., 2025) = show connection between C-RASP and length generalization of
transformers. The definability of a language 𝐿 in C-RASP predicts whether transformers can reliably length-generalize when
trained on strings from 𝐿.

C-RASP and experimental motivation02

INTERPRETATION = One interpretation of this finding is that mechanisms expressible in C-RASP may be more robustly
learnable for transformers.

HYPOTHESIS = it is better to pre-pretrain on formal languages that can be defined in C-RASP so that the learned
representations can transfer reliably.

METHODS03

DEFINING PRE-PRETRAINING
Use optimizer A(D,𝑡,𝜃init) which returns parameters 𝜃𝑡 after 𝑡 timesteps.
They apply A sequentially:

 Pre-pretrain for 𝑡₀ steps on dataset Dppt to obtain model parameters 𝜃𝑡₀ 1.
 Pretrain for 𝑡₁ steps on dataset Dpt to obtain 𝜃𝑡₁2.

Their objective is to minimize the expected loss on the pretraining dataset:
argmin 𝜃₁ E[l (Dpt,𝜃𝑡₁)].

KEY CONSTRAINT = keep everything else fixed (optimizer, t₁, and Dpt), so the
only variables are:

Pre-pretraining dataset (Dppt)
Pre-pretraining duration (t₀)

This way, they can directly test whether pre-pretraining on formal languages is
beneficial.

BASELINES OF COMPARISON

No pre-pretraining(𝑡₀=0)
Random binary strings
("0110101011100010")
Random strings of 𝑘 integers ("3 7 2 5 8 1 0
4 6 9")
Held-out natural language data from the
same distribution as Dpt

METHODS03

EVALUATION
validation loss (0), BLiMP (1) and verbatim retrieval (2)

0. Lower validation loss compared to the no pre-pretraining baseline would indicate that pre- pretraining on
formal languages is beneficial

1. Accuracy on BLiMP as proportion of examples where the grammatical sentence is assigned higher likelihood
than the ungrammatical one (Warstadt et al., 2020a)

2. Verbatim retrieval tests LMs on text passages with repeated lists (Armeni et al., 2022, 2024); the model is
expected to assign a very high likelihood to the words in the second repetition of the list

"Before the meeting, Mary wrote down the following list of words: window, door, roof. After the meeting, she took a break
and had a cup of coffee. When she got back, she read the list again: window, door, roof."

METHODS03

Calculate the marginal rate of substitution (MRS) between formal and natural language at 10,000 steps of
natural language pretraining

In other words, if we train on 500 steps of the formal language, how many more steps does it take for the natural
language-only baseline to catch up?

EFFICIENCY

Suppose we have two scenarios that achieve the same loss:

No pre-pretraining → Takes (0,10000) steps of natural language training

With pre-pretraining (500 steps on formal language) → Takes (500,6000) steps of natural language training

pre-pretraining on formal languages reduces the number of
required natural language training steps by 35%

good pre-pretraining language minimize amount of pretraining steps + improve evaluation performance

04 EXPRESSIVITY HYPOTHESIS
A formal language that confers a helpful inductive bias should be hierarchically
structured (either context-free or context-sensitive) and definable in C-RASP.

the copy language. Context-sensitive, in FO(M)\C-RASP
𝑘-Dyck with cross-serial dependencies. Context-sensitive, in C-RASP

contains 𝑘 different types of parentheses. Context-free, in FO(M)\C-RASP

the nested parentheses language. Context-free, in C-RASP

To reduce confounds: they build 1-Dyck, 𝑘-Dyck, and 𝑘-Shuffle Dyck corpora with matching depth distributions.
During corpus generation - randomly opening or closing parentheses with probability 𝑝 = 0.5 - which yields a harmonic distribution
over depths.

 All language models are pre-pretrained on the same number of tokens with sequence packing.

04 TRAINING

C4 as the natural language dataset (Raffel et al., 2019)

on roughly 665 million tokens

for 10,000 steps

trained Pythia 160M models (Biderman et al., 2023)

OPTIMAL PRE-PRETRAINING DURATION VARIES BY LANGUAGE

Different formal languages require different amounts of pre-pretraining for best transfer to natural language
The study tests four durations (from 30M to 260M tokens, 500 to 4000 gradient updates)

Most efficient formal language is 𝑘-Shuffle Dyck, with 𝑡₀∗ = 500.
𝑘-Dyck also outperform natural language pre-pretraining, but
optimum is achieved around 𝑡₀∗ =1000.

For natural language...

04 EVALUATION

𝑘-Shuffle Dyck is the best- performing formal language on the validation set of C4, followed by 𝑘-Dyck

pre- pretraining on all four formal languages improves accuracy in grammaticality, but pre-
pretraining on natural language (C4) does not [pre-pretraining induces representations useful for
modeling hierarchical structure]

pre-pretraining on either random binary strings or 𝑘-integer strings has a negative effect: it results in
higher validation loss than no pre-pretraining

05 PRUNING
What is the mechanism by which pre-pretraining facilitates the learning of natural language?

Pre-pretraining activates a subnetwork (MMM) in the model
This subnetwork persists and improves natural language learning

SUBNETWORK HYPOTHESIS

If no impact: MMM ≈ Mnull
If positive transfer: MMM performs significantly better

Step 1: Pre-train on formal language dataset (Dppt)
Step 2: Prune attention heads using core pruning algorithm, Bhaskar et al. (2024)
Step 3: Fine-tune on natural language (Dpt)
Step 4: Compare pruned subnetwork (MMM) vs. randomly pruned model (Mnull)

METHODS

EXPECTED RESULTS

05 PRUNING (RESULTS)

M (structured pruning – learned subnetwork)
Mnull (random pruning – control group)
M𝑐 (complement of M – the pruned part of the model)

They find that M outperforms random masking and M𝑐.
They show that M does not achieve the performance of the
full network, indicating that attention heads outside of M
are also useful for natural language.

06 SYNTACTIC SUBNETWORK
Subnetwork M mostly implements syntax, but pre-pretraining also helps models learn non-syntactic
knowledge like morphology, or word structure.

TO OBSERVE THIS
They compare M’s performance on BLiMP against that of the full network, aggregated by the classification
of linguistic phenomena as reflecting morphology (27% of BLiMP examples) versus syntax and semantics
(73%).

CONCLUSION
pre-pretraining has second-order effects: in addition to
syntactic benefits, pre-pretraining can improve
performance on non-syntactic tasks.

07 ANALYZING SHUFFLE DYCK
Does the success of 𝑘-Shuffle Dyck come from its hierarchical structure, or could the
model learn similar patterns from simpler statistical features?

Neural networks have a distributional simplicity bias (DSB) (Belrose et al., 2024) they learn simpler statistical patterns,
such as the mean and covariance of their representations, before progressing to higher-order relationships

Removing the rule-based structure of 𝑘-Shuffle Dyck while preserving statistical properties still
leads to improvements?

Ablation of Rule-Based Structure: Instead of training on true 𝑘-Shuffle Dyck sequences, they generate
synthetic datasets (metamer datasets) that match 𝑘-Shuffle Dyck in certain statistical properties but lack
its formal structure.

train unigram, bigram, and trigram models on the 𝑘-Shuffle Dyck corpus 1.
use these models to generate new datasets that mimic statistical properties but do not follow the rule-
based syntax of Dyck languages

2.

07 ANALYZING SHUFFLE DYCK

They also test different k for
k-shuffle Dyck

LARGER SCALE
examine whether their results generalize to larger settings by training Pythia-1B
for 1.63B tokens on C4 (25,000 steps)

In this setting, pre-pretraining on 𝑘-Shuffle Dyck continues to outperform on all evaluation metrics and achieves the
final loss of no pre-pretraining in 1.10B total tokens. This equates to a token efficiency gain of 33% �
Pre-pretraining could increase the efficiency of large-scale pretraining as well.

MIXI07 CONCLUSIONS AND REMARKS
BLOCK TRAINING : first on formal languages and then on natural language

They evaluated efficiency in a setting where pretraining data is plentiful, and one can train
without running several epochs over the same data

A low-resource setting INTERESTING and may yield different scaling properties with respect to
pre-pretraining data (Muennighoff et al., 2023). Relevant for non-English languages

MIXING TRAINING: mixing formal and natural language during training could lead to
better performance (Korbak et al., 2023)

Finally, this work only considers transformers. Circuit complexity has also quantified the expressive
power of neural networks like RNNs and state-space models (Merrill et al., 2020, 2024), and it
would be interesting to extend our results to these architectures.

