

What is the real benefit of using Child Directed Language for Language Modeling?

Francesca Padovani¹ & Jaap Jumelet¹ & Yevgen Matusevych¹ & Arianna Bisazza¹ | ¹GroNLP, University of Groningen | f.padovani@rug.nl

RESEARCH MOTIVATION

Child-Directed Language (CDL) has proven to be beneficial to enhance the grammatical learning of language models (LMs) when used as training data.

However, this claim is primarily supported by a generalistic accuracy score across various syntactic paradigms, making it difficult to pinpoint the specific aspects of CDL that contribute to this improvement.

RESEARCH QUESTIONS

- 1. Do these results hold across different models, languages, and more principled evaluation datasets?
- 2. How does the composition of training data (CDL vs. Wikipedia) influences model behavior?

DATASET COMPOSITION (Wikipedia vs CHILDES)

MODELS (MLM vs CLM)

Masked language model (RoBERTa): follows

Causal language model (GPT-2): aligns better

previous work where CDL-trained models

outperformed Wikipedia-trained models

CLAMS (Mueller et al., 2020): **EVALUATION BENCHMARK**

Multilingual and semantically plausible minimal pair benchmark focused on subject-verb agreement.

Simple Agreement

the teachers are short the teachers is short

Agreement in VP Coordinates

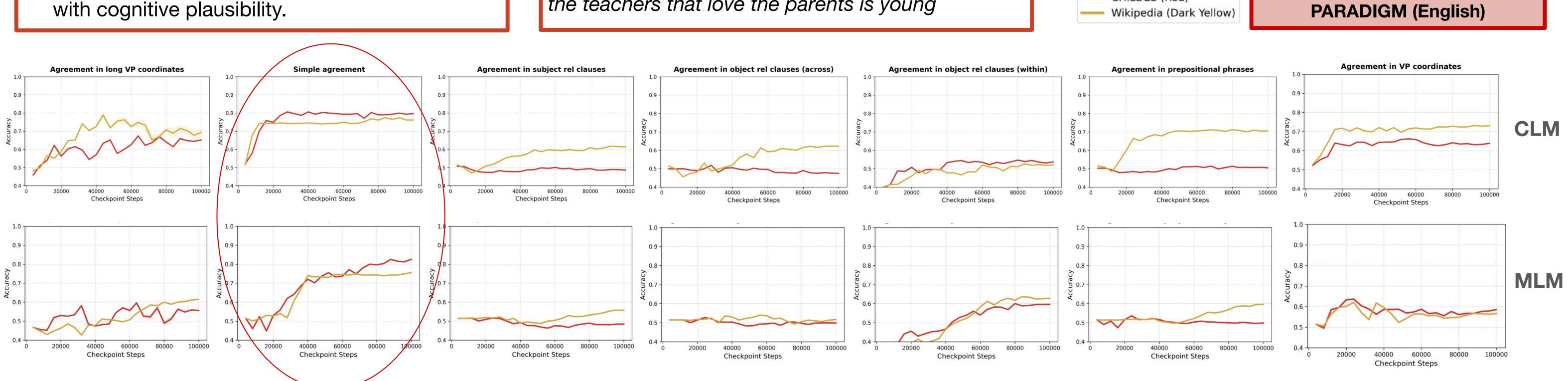
the manager laughs and is young the manager laughs and are young

Agreement in Prepositional Phrases

the teacher to the side of the guard laughs the teacher to the side of the guard laugh

Agreement in Subject Relative Clauses

the teachers that love the parents are young the teachers that love the parents is young


ACCURACY RESULTS on CLAMS

No model trained on CDL outperforms a model trained on Wikipedia in terms of overall performance, across any language or model type.

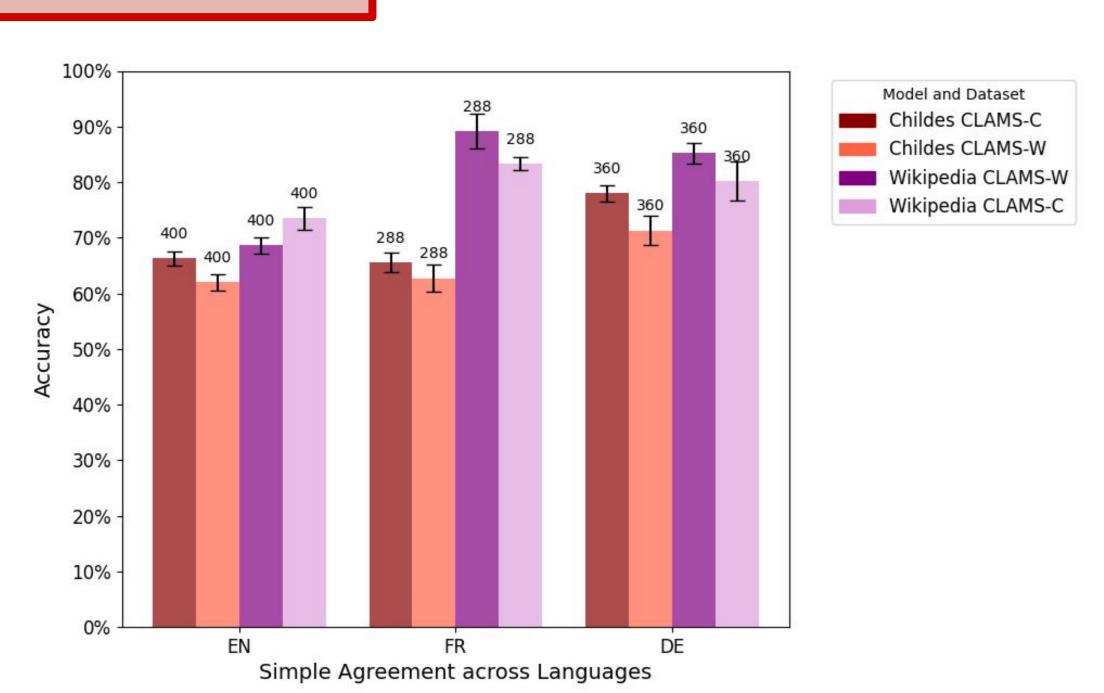
LEARNING CURVES FOR EACH PARADIGM (English)

BUILDING A NEW CLAMS

Word	Bin	Freq	Df	Word
roomate,roomates	0	2	childes	picker,pic
resident, residents	1	6	childes	harvester
librarian, librarians	2	15	childes	fireman,f
officer, officers	3	40	childes	superher
toddler, toddlers	4	97	childes	explorer,
farmer, farmers	5	271	childes	painter,p
policeman, policemen	6	421	childes	parent,pa
doctor, doctors	7	754	childes	writer,wi
man,men	8	2373	childes	president
daddy,daddies	9	7720	childes	group,gro

Bin Freq Df wiki er,harvester wiki wiki ro,superheros 80 wiki explorers 179 wiki painters 394 wiki parents 683 wiki riters nt, presidents 1635 wiki

We generate **new** minimal pairs for all three languages by selecting subjects and verbs with a frequency distribution that accurately represents the original training datasets, both CHILDES and Wikipedia.


REGRESSION ANALYSIS

- To what extent does the unigram frequency of a given token explain the model's ability to distinguish the grammatical sentence?
- How does the frequency with which a token has been observed as a **subject** or **verb** in the training dataset impact the model's ability to distinguish the grammatical sentence?

	R-SQUARE)	0.282		
	coef	std err	t	P> t	
const	1.1681	0.191	6.122	0.000	
subj_freq	-0.1993	0.207	-0.965	0.336	
verb1_freq	2.0239	0.263	7.703	0.000	
verb2_freq	-1.0099	0.262	-3.855	0.000	

0	LS REGRES	SION RESULT	S WIKIPEDIA	
	R-SQUAREI)		0.688
	coef	std err	t	P> t
const	1.7635	0.129	13.700	0.000
subj_freq	0.2269	0.129	1.758	0.080
verb1_freq	4.2844	0.214	20.023	0.000
verb2_freq	-4.1178	0.214	-19.253	0.000

CDL and Wiki **CLM-Model** Results on the new CLAMS

Models trained on Childes perform better on the new set of simple agreement minimal pairs derived from subjects and verbs sourced from the **CHILDES** training dataset distribution.

Similarly, models trained on Wikipedia perform better on the new set of minimal pairs derived from the Wikipedia distribution (except for English).