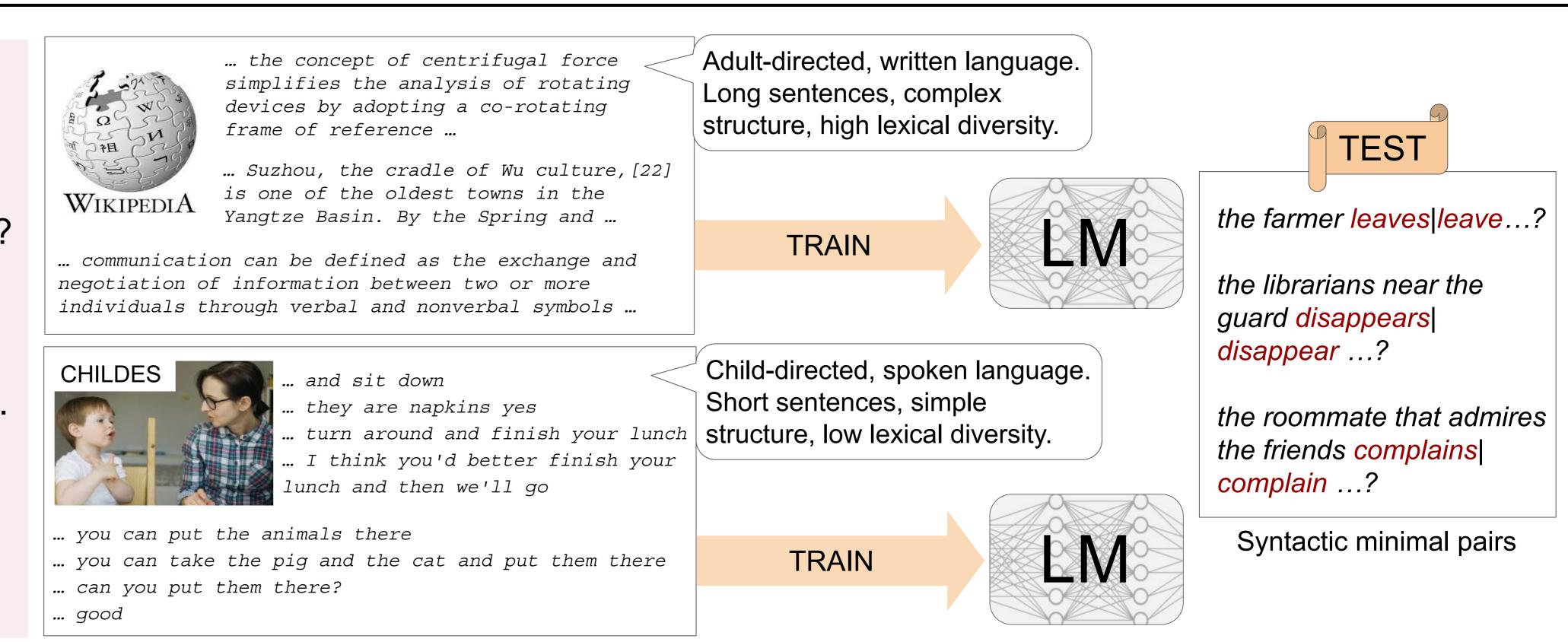


Child-Directed Language Does Not Consistently Boost Syntax Learning in Language Models


Francesca Padovani & Jaap Jumelet & Yevgen Matusevych & Arianna Bisazza | GroNLP, University of Groningen | f.padovani@rug.nl

Motivation

LMs have human-like linguistic skills, but are trained in non-human ways. What if we trained LMs in more developmentally plausible ways?

Training on **Child-Directed Language (CDL)** has been argued to **benefit syntax learning** in English LMs (Huebner et al., 2021; Salhan et al. 2024), **but ...**

Are CDL benefits consistent across models, languages, and syntactic benchmarks?

We find no consistent benefit of training LMs on Child-Directed Language for syntactic learning; effects vary by model architecture, language, and benchmark, and are partly driven by lexical frequency and corpus composition.

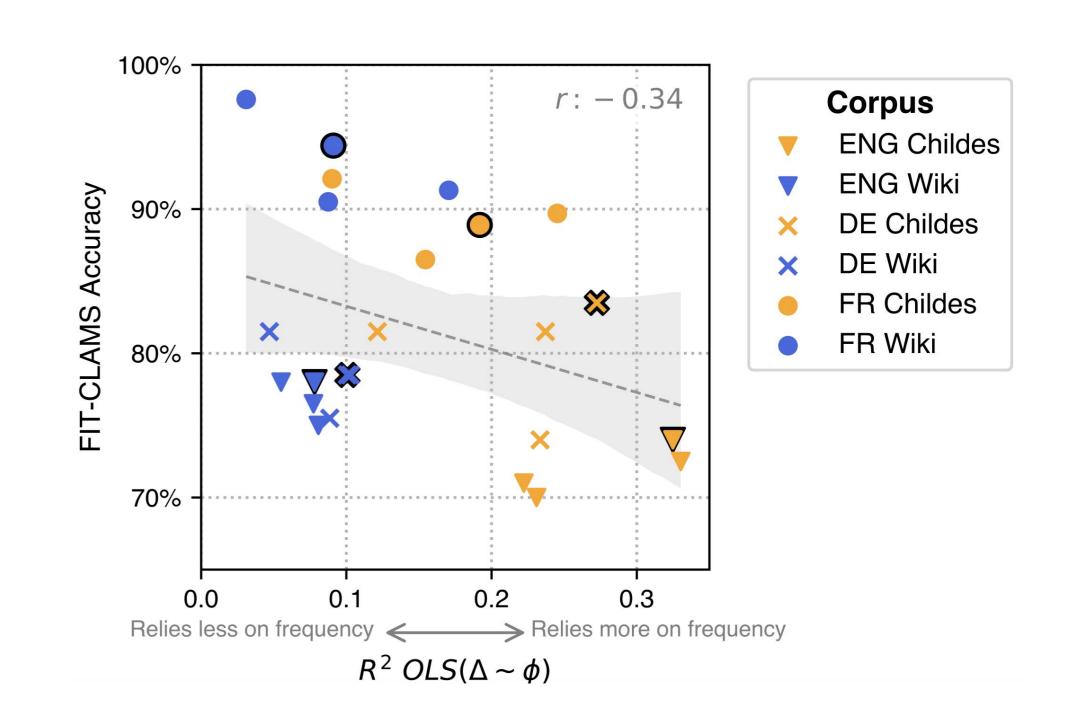
Evaluation setup

- 2 models architectures: GPT2 (Causal LM) & RoBERTa (Masked LM)
- 3 language datasets:
 English, French, German
- 3 syntactic benchmarks:
 BLiMP, Zorro, CLAMS

MIXED RE	SULTS	! — CHI	LDES ≈ Wiki	CHILDES ≥ Wiki CHILDES ≪ Wiki			
					CLAMS		
	Model	Training Data	BLiMP	Zorro	English	French	German
GPT-2	CLM	CHILDES Wiki	0.61 ± 0.02 0.61 ± 0.02	0.76 ± 0.04 0.69 ± 0.04		0.64 ± 0.01 0.80 ± 0.01	0.69 ± 0.03 0.81 ± 0.01
RoBERTa	MLM	CHILDES Wiki		0.66 ± 0.05 0.67 ± 0.03		0.59 ± 0.02 0.69 ± 0.01	0.70 ± 0.01 0.75 ± 0.01

Better evaluation: Frequency Informed Testing (FIT)

Problem: Comparing syntactic accuracy of models trained on different corpora is tricky because of different vocabularies!

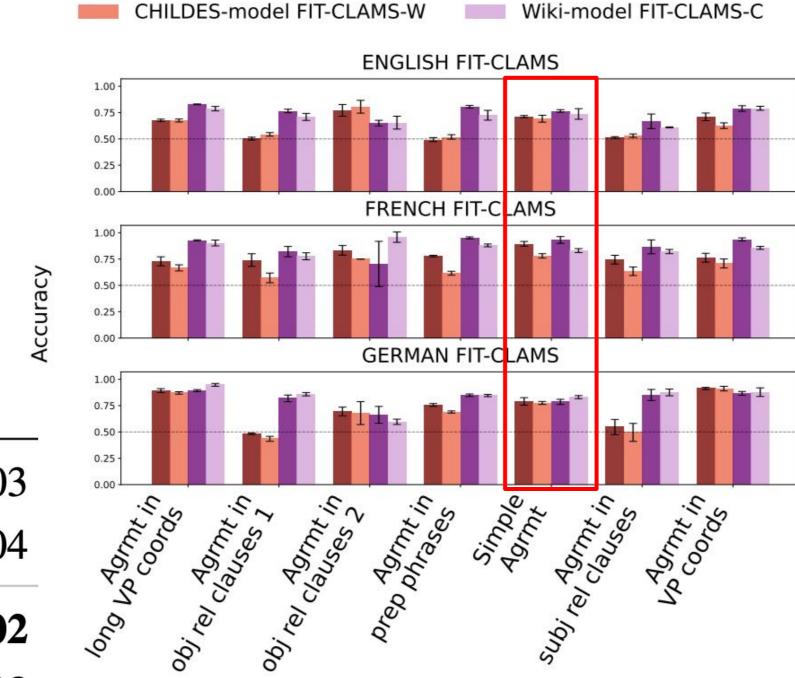

Our solution: Generate minimal pairs balanced by corpus-specific lexical frequency, ensuring a fair spread of high- and low-frequency items *for each corpus*.

EN Nouns	Bin	Freq	Df	EN Verbs	Bin	Freq	Long VP	Df
roommate, roommates	0	2	CHI	awaits, await	0	2	the guests	CHI
resident, residents	1	6	CHI	complains, complain	1	8	about the noise	CHI
librarian, librarians	2	13	CHI	arrives, arrive	2	17	at the station	CHI
officer, officers	3	36	CHI	disappears, disappear	2	42	from the scene	CHI
toddler, toddlers	4	90	CHI	bows, bow	4	243	to the king	CHI
farmer, farmers	5	264	CHI	hides, hide	4	391	from the chicken	CHI
policeman, policemen	6	380	CHI	leaves, leave	6	1793	the room	CHI
doctor, doctors	7	656	CHI	sits, sit	7	4219	in the car	CHI
man, men	8	2156	CHI	thinks, think	8	14710	about the trip	CHI
daddy, daddies	9	7027	CHI	goes, go	9	27620	to the new store	CHI

Regression Analysis

How does lexical frequency in minimal pairs affect model accuracy?

→ Models that rely more on lexical frequency (higher fit) tend to perform worse on FIT-CLAMS.



Results of CLM models on FIT-CLAMS

As expected, LMs perform better on minimal pairs created with in-distribution lexical items.

However, LMs trained on Wiki still outperform those trained on CHILDES in most cases including Simple Agreement, even when controlling for frequency effects

Training	Eval. lex.	EN	FR	DE
CHILDES	CHILDES	0.63 ± 0.02	0.78 ± 0.04	0.73 ± 0.03
CHILDES	Wiki	0.63 ± 0.03	0.67 ± 0.03	0.69 ± 0.04
XX7:1-:	CHILDES	0.72 ± 0.03	$\textbf{0.86} \pm \textbf{0.02}$	0.83 ± 0.02
Wiki	Wiki	$\textbf{0.75} \pm \textbf{0.02}$	$\textbf{0.88} \pm \textbf{0.06}$	$\textbf{0.82} \pm \textbf{0.03}$

CHILDES-model FIT-CLAMS-C

Conclusions

- CDL shows no clear benefit for syntax learning
- This holds for current modeling approaches:
 LMs trained in static, non-interactive
 environments, without feedback,
 developmental grounding, or cognitive
 constraints, unlike human learners
- CDL may still hold promise in interactive, situated learning environments, shifting focus toward the communicative and contextual factors essential to language acquisition